
From the Sponsor

Has software design finally come of age? Mechanical, electrical, chemical, industrial,
and other engineering design disciplines have been in place for centuries and have

experienced the associated growth and cross-pollination of shared concepts, tools, trial
and error, etc. However, software engineering is still relatively new.

The discipline of software design has only been matured for a few decades. It wasn’t
until the 1960s that the first software products hit the marketplace. Standards such as
American Standard Code for Information Interchange and concepts such as object-ori-

ented code didn’t appear until the 1960s. Our dominant programming language C++ didn’t emerge
until the 1980s. More recently, we have seen design tools such as CASE [Computer-Aided Software
Engineering] and fourth generation programming languages.

Our discipline of software engineering has really experienced phenomenal growth right before
our eyes. A sign that software design has really arrived is indicated by the hardware changes that
are being driven by the complexity of software designs. Our phenomenal growth is also accompa-
nied by real challenges. The increasing complexity of our software also necessitates that our indus-
try stay focused on process improvement. As you read some of this month’s articles, take yourself
back 10 or 20 years, and revel at how far we have come, but also envision where we need to go.

Software: Where We’ve Been
And Where We’re Going

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

November 2005 www.stsc.hill.af.mil 3

From the Publisher

This month we cover another critical phase in the software system life cycle – design.
Industry has been successful over time with emphasizing and providing many

methods and tools for improving design. Software engineers know their hands will be
slapped if they rush from requirements to programming code without taking the time
to design. The design phase can be looked at as a problem-solving process. Another
way to think of design is to focus on the how. Requirements are focused on what prob-
lem will be solved. The design focuses on how the problem will be solved.

Our theme section begins with Selecting Architecture Products for a Systems Development Program by
Michael S. Russell. This author describes a repeatable process that emphasizes architecture as
the source of information that decision makers can turn to throughout the systems engineering
process. In Dependency Models to Manage Software Architecture, Neeraj Sangal and Frank Waldman
relate a new approach using inter-module dependencies to specify and manage system architec-
ture. Next, in UML Design and Auto-Generated Code: Issues and Practical Solutions by Ilya Lipkin and
Dr. A. Kris Huber, lessons learned from designing with the Unified Modeling Language (UML)
are presented from a real-time control system perspective. Lastly, Dr. Hans-Peter Hoffmann
describes how systems engineers can capture requirements and specify architecture in UML 2.0-
Based Systems Engineering Using a Model-Driven Development Approach.

In this month’s supporting articles, Arlene F. Minkiewicz and Jeffrey Voas each offer addi-
tional information on software security, another important factor to consider during the design
phase. I hope this month’s issue provides helpful information as new and improved methods
continue to evolve design processes.

Design Focuses on the How

Tracy L. Stauder
Publisher


